Abstract
Modern imaging optics ensures high-quality photography at the cost of a complex optical form factor that deviates from the portability. The drastic development of image processing algorithms, especially advanced neural networks, shows great promise to use thin optics but still faces the challenges of residual artifacts and chromatic aberration. In this work, we investigate photorealistic thin-lens imaging that paves the way to actual applications by exploring several fine-tunes. Notably, to meet all-day photography demands, we develop a scene-specific generative-adversarial-network-based learning strategy and develop an integral automatic acquisition and processing pipeline. Color fringe artifacts are reduced by implementing a chromatic aberration pre-correction trick. Our method outperforms existing thin-lens imaging work with better visual perception and excels in both normal-light and low-light scenarios.
Funder
Zhejiang University Education Foundation Global Partnership Fund
Zhejiang Provincial NSFC
Shanghai Pujiang Program
OPPO Research Fund
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献