Affiliation:
1. University of Wisconsin-Madison
2. William S. Middleton Memorial Veterans Hospital
Abstract
Serological assays that can reveal immune status against COVID-19 play a critical role in informing individual and public healthcare decisions. Currently, antibody tests are performed in central clinical laboratories, limiting broad access to diverse populations. Here we report a multiplexed and label-free nanoplasmonic biosensor that can be deployed for point-of-care antibody profiling. Our optical imaging-based approach can simultaneously quantify antigen-specific antibody response against SARS-CoV-2 spike and nucleocapsid proteins from 50 µL of human sera. To enhance the dynamic range, we employed multivariate data processing and multi-color imaging and achieved a quantification range of 0.1-100 µg/mL. We measured sera from a COVID-19 acute and convalescent (N = 24) patient cohort and negative controls (N = 5) and showed highly sensitive and specific past-infection diagnosis. Our results were benchmarked against an electrochemiluminescence assay and showed good concordance (R∼0.87). Our integrated nanoplasmonic biosensor has the potential to be used in epidemiological sero-profiling and vaccine studies.
Funder
Wisconsin Alumni Research Foundation
School of Medicine and Public Health, University of Wisconsin-Madison
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献