Photonic generation of dual-band dual-chirp waveforms with anti-dispersion transmission

Author:

Yang Shuna,Zhu Wenjie,Chi Hao,Yang BoORCID,Ou Jun,Zhai Yanrong

Abstract

A photonic approach for generating dual-band dual-chirp waveforms with the capability of anti-dispersion transmission is proposed. In this approach, an integrated dual-drive dual-parallel Mach–Zehnder modulator (DD-DPMZM) is adopted to realize single-sideband modulation of a RF input and double-sideband modulation of baseband signal-chirped RF signals. By properly presetting the central frequencies of the RF input and the bias voltages of DD-DPMZM, dual-band dual-chirp waveforms with anti-dispersion transmission can be achieved after photoelectronic conversion. A complete theoretical analysis of the operation principle is presented. Full experimental verification of the generation and anti-dispersion transmission of dual-chirp waveforms centered at 2.5 and 7.5 GHz as well as 2 and 6 GHz over two dispersion compensating modules with dispersion values equivalent to 120 km or 100 km standard single-mode fiber is successfully carried out. The proposed system features a simple architecture, excellent reconfigurability, and immunity to dispersion-induced power fading, which are highly desired in distributed multi-band radar networks with optical-fiber-based transmission.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear dual-chirp microwave waveforms generation based on period-one state of integrated mutual injection laser;Fourteenth International Conference on Information Optics and Photonics (CIOP 2023);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3