THz transmissive all-dielectric guided-mode resonance filter with high Q and tunability using suspended gratings

Author:

Zhou Pan1,Sun Guotao1ORCID,Wang Qingkang,Wu KaiyuORCID

Affiliation:

1. Shanghai Jiao Tong University

Abstract

Most currently available THz narrowband filters employ metal that introduces loss, or work in reflection mode, which limits their scope of application. Here, a transmissive all-dielectric guided-mode resonance filter in the THz region is presented. It contains a suspended grating layer and a waveguide layer, separated by an air layer. A fabrication process of the filter is proposed. Simulation results show that the designed filter exhibits excellent transmittance of ∼97.5% with a high Q value of ∼1500 at 1.64 THz. Furthermore, this transmission peak is surrounded by a wide and flat sideband with width of ∼0.75THz and transmission below 10%. Moreover, tunability of the filter is realized by geometric scaling and by varying the thickness of the air layer. Using geometric scaling, the filtering frequency can be widely tuned from 0.54 to 1.64 THz, covering the 625–725 and 780–910 GHz wireless communication windows. Additionally, fine tuning achieved by varying the air layer thickness could be used to compensate for a tiny shift of the designed filtering frequency caused by errors introduced in the fabrication process. The Q value can be further boosted to ∼11,500 by adding another layer of waveguide. Due to its transmissive nature and high-Q resonant mode with a wide sideband and tunability, the presented filter exhibits great potential in THz applications such as spectroscopy, imaging, and communication.

Funder

Huawei Technologies

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3