Affiliation:
1. Shanxi University
2. Beijing Institute of Technology
3. RMIT University
4. Peking University Yangtze Delta Institute of Optoelectronics
Abstract
Perovskite-enabled optical devices have drawn intensive interest and have been considered promising candidates for integrated optoelectronic systems. As one of the important photonic functions, optical phase modulation previously was demonstrated with perovskite substrate and complex refractive index engineering with laser scribing. Here we report on the new scheme of achieving efficient phase modulation by combining detour phase design with 40 nm ultrathin perovskite films composed of nanosized crystalline particles. Phase modulation was realized by binary amplitude patterning, which significantly simplifies the fabrication process. Perovskite nanocrystal films exhibit significantly weak ion migration effects under femtosecond laser writing, resulting in smooth edges along the laser ablated area and high diffractive optical quality. Fabrication of a detour-phased perovskite ultrathin planar lens with a diameter of 150 μm using femtosecond laser scribing was experimentally demonstrated. A high-performance 3D focus was observed, and the fabrication showed a high tolerance with different laser writing powers. Furthermore, the high-quality imaging capability of perovskite ultrathin planar lenses with a suppressed background was also demonstrated.
Funder
Guangdong Major Project of Basic and Applied Basic Research
National Natural Science Foundation of China
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献