Low-cost and flexible paper-based plasmonic nanostructure for a highly sensitive SERS substrate

Author:

Dong JunORCID,Cao Yi,Yuan Jiaxin,Wu Haoran,Zhao Yizhen,Li Chenlu,Han Qingyan,Gao Wei,Wang YongkaiORCID,Qi Jianxia

Abstract

The application of a noble-metal-based plasmon-enhanced substrate to detect low-concentration analytes has attracted extensive attention. Most of the substrates used in recently reported researches are based on two-dimensional structures. Hence, we prepared a higher efficiency Raman activity substrate with a filter paper structure, which not only provides more plasmonic “hot spots,” but also facilitates analyte extraction and detection due to the flexibility of the paper. The preparation of the plasmonic paper substrate adopted centrifugation to deposit the alloy nanoparticles onto the paper base. The optimal particle deposition condition was found by adjusting the centrifugal force and centrifugation time. Then, the surface-enhanced Raman spectroscopy (SERS) performance of the substrate was enhanced by altering the plasmon resonance peak on the surface of the nanoparticles. The enhancement factor of this paper-based substrate was 1.55 × 1 0 7 , with high detection uniformity ( 1 0 6 M , rhodamine 6G) and a low detection limit ( 1 0 11 M , rhodamine 6G). Then, we applied the SERS substrate to pesticide detection; the detection limit of the thiram reached 1 0 6 M . As a result, the simple and cost-effective paper-based SERS substrate obtained in this way has high detection performance for pesticides and can be used for rapid detection in the field, which is beneficial to food safety and environmental safety.

Funder

National Natural Science Foundation of China

Shaanxi Province Natural Science Foundation of China

Innovation Funds of Graduate Programs of Xi’an University of Posts Telecommunications

Key Research and Development Project of Shaanxi Province

Young Talent Fund of University Association for Science and Technology in Shaanxi

Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3