Abstract
Topological photonic crystals with robust pseudo-spin and valley edge states have shown promising and wide applications in topological waveguides, lasers, and antennas. However, the limited bandwidth and intrinsic coupling properties of a single pseudo-spin or valley edge state have imposed restrictions on their multifunctional applications in integrated photonic circuits. Here, we propose a topological photonic crystal that can support pseudo-spin and valley edge states simultaneously in a single waveguiding channel, which effectively broadens the bandwidth and enables a multipath routing solution for terahertz information processing and broadcasting. We show that distorted Kekulé lattices can open two types of bandgaps with different topological properties simultaneously by molding the inter- and intra-unit cell coupling of the tight-binding model. The distinct topological origins of the edge states provide versatile signal routing paths toward free space radiation or on-chip self-localized edge modes by virtue of their intrinsic coupling properties. Such a powerful platform could function as an integrated photonic chip with capabilities of broadband on-chip signal processing and distributions that will especially benefit terahertz wireless communications.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Stable Support Program for Higher Education Institutions from Shenzhen Science, Technology & Innovation Commission
Global Recruitment Program of Young Experts of China
Southern University of Science and Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献