Towards retrieving dispersion profiles using quantum-mimic optical coherence tomography and machine learning

Author:

Maliszewski Krzysztof A.,Kolenderski Piotr1ORCID,Vetrova Varvara,Kolenderska Sylwia M.1

Affiliation:

1. Nicolaus Copernicus University

Abstract

Artefacts in quantum-mimic optical coherence tomography are considered detrimental because they scramble the images even for the simplest objects. They are a side effect of autocorrelation, which is used in the quantum entanglement mimicking algorithm behind this method. Interestingly, the autocorrelation imprints certain characteristics onto an artefact – it makes its shape and characteristics depend on the amount of dispersion exhibited by the layer that artefact corresponds to. In our method, a neural network learns the unique relationship between the artefacts’ shape and GVD, and consequently, it is able to provide a good qualitative representation of object’s dispersion profile for never-seen-before data: computer-generated single dispersive layers and experimental pieces of glass. We show that the autocorrelation peaks – additional peaks in the A-scan appearing due to the interference of light reflected from the object – affect the GVD profiles. Through relevant calculations, simulations and experimental testing, the mechanism leading to the observed GVD changes is identified and explained. Finally, the network performance is tested in the presence of noise in the data and with the experimental data representing single layers of quartz, sapphire and BK7.

Funder

Fundacja na rzecz Nauki Polskiej

University of Canterbury, New Zealand

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3