Liquid crystal spatial light modulator based non-mechanical beam steering system fractional-order model

Author:

Wang Zishuo1,Wang Chunyang12,Liang Shuning1,Liu Xuelian2

Affiliation:

1. Changchun University of Science and Technology

2. Xi’an Technological University

Abstract

The liquid crystal spatial light modulator (LCSLM) is an optical device that can realise non-mechanical beam scanning. However, the traditional integer-order model cannot adequately characterise the dynamic performance of LCSLM beam steering because of the viscoelasticity of liquid crystals. This paper uses the memory characteristics of fractional calculus to construct a fractional constitutive equation for liquid crystals. Combining this equation with the LCSLM beam steering principle, a fractional-order model of the beam steering system is established, and the Legendre wavelet integration operational matrix method is used to estimate the model parameters. In addition, we established a test platform for the dynamic characteristics of LCSLM beam steering system and verified the effectiveness of the established model through experiments. The fitting effects of the integer-order and fractional-order models are compared, and the influence of different model orders on the dynamic performance of beam steering is analysed. Experimental results show that the fractional-order model can accurately describe the dynamic process of beam steering, and this model can be applied to the study of LCSLM-based two-dimensional non-mechanical beam steering control strategies to achieve fast, accurate, and stable beam scanning.

Funder

Department of Science and Technology of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3