Affiliation:
1. Czech Technical University in Prague
2. Lund University
Abstract
Upper bounds on the focusing efficiency of aperture fields and lens systems are formulated using integral equation representations of Maxwell’s equations and Lagrangian duality. Two forms of focusing efficiency are considered based on lens exit plane fields and optimal polarization currents within lens design regions of prescribed shape and available materials. Bounds are compared against the performance of classical prescriptions of ideal lens aperture fields, hyperbolic lens designs, and lenses produced by inverse design. Results demonstrate that, without regularization, focusing efficiency based solely on lens exit plane fields is unbounded, similar to the problem of unbounded antenna directivity. Additionally, results considering extruded two-dimensional dielectric geometries driven by out-of-plane electric fields for the calculation of bounds and inverse design demonstrate that aperture fields based on time-reversal do not necessarily yield optimal lens focusing efficiency, particularly in the case of near-field (high numerical aperture) focusing.
Funder
Vetenskapsrådet
Grantová Agentura České Republiky
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献