Affiliation:
1. Beijing Institute of Technology
2. Yangtze Delta Region Academy of Beijing Institute of Technology
3. Kashgar Vocational and Technical College
Abstract
Aiming to enhance the ns-LIBS signal, in this work, we introduced orbital angular momentum to modulate the laser phase of the Gaussian beam into the vortex beam. Under similar incident laser energy, the vortex beam promoted more uniform ablation and more ablation mass compared to the Gaussian beam, leading to elevated temperature and electron density in the laser-induced plasma. Consequently, the intensity of the ns-LIBS signal was improved. The enhancement effects based on the laser phase modulation were investigated on both metallic and non-metallic samples. The results showed that laser phase modulation resulted in a maximum 1.26-times increase in the peak intensities and a maximum 1.25-times increase in the signal-to-background ratio (SBR) of the Cu spectral lines of pure copper for a laser energy of 10 mJ. The peak intensities of Si atomic spectral lines were enhanced by 1.58-1.94 times using the vortex beam. Throughout the plasma evolution process, the plasma induced by the vortex beam exhibited prolonged duration and a longer continuous background, accompanied by a noticeable reduction in the relative standard deviation (RSD). The experimental results demonstrated that modulation the laser phase based on orbital angular momentum is a promising approach to enhancing the ns-LIBS signal.
Funder
National Natural Science Foundation of China
Graduate Interdisciplinary Innovation Project of Yangtze Delta Region Academy of Beijing Institute of Technology
BIT Research and Innovation Promoting Project