Affiliation:
1. Xiamen University
2. NOAA/NESDIS Center for Satellite Applications and Research (STAR)
3. Global Science & Technology, Inc.
Abstract
The effective sea-surface skylight reflectance (ρ) is an important parameter for removing the contribution of surface-reflected radiance when measuring water-leaving radiance (Lw) using the above-water approach (AWA). Radiative simulations and field measurements show that ρ varies spectrally. To improve the determination of Lw (and then remote sensing reflectance, Rrs) from the AWA, we further developed a wavelength-dependent model for ρ to remove surface-reflected radiance, which is applied with a spectral optimization approach for the determination of Rrs. Excellent agreement was achieved between the AWA-derived and skylight-blocked approach (SBA)-obtained Rrs (coefficient of determination > 0.92, mean absolute percentage deviation < ∼ 11% for Rrs > 0.0005 sr-1), even during high wave conditions. We found that the optimization approach with the new ρ model worked very well for a wide range of water types and observation geometries. For developing remote sensing algorithms and evaluating satellite products, it would be beneficial to apply this approach to current and historical above-water in situ measurements of Rrs to improve the quality of these data. In addition, this approach could also increase the number of useable spectra where previously rendered unusable when processed with a traditional scheme.
Funder
European Commission Horizon 2020 project Copernicus Evolution – Research for harmonised and Transitional-water Observation
European Space Agency
Natural Environment Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献