Affiliation:
1. Renmin University of China
2. Shanghai Jiao Tong University
3. Shenzhen Institute of Advanced Technology
4. University of Rochester
Abstract
Water-based coherent detection of broadband terahertz (THz) wave has been recently proposed with superior performances, which can alleviate the limited detection bandwidth and high probe laser energy requirement in the solid- and air-based detection schemes, respectively. Here, we demonstrate that the water-based detection method can be extended to the aqueous salt solutions and the sensitivity can be significantly enhanced. The THz coherent detection signal intensity scales linearly with the third-order nonlinear susceptibility χ(3) or quadratically with the linear refractive index η0 of the aqueous salt solutions, while the incoherent detection signal intensity scales quadratically with χ(3) or quartically with η0, proving the underlying mechanism is the four-wave mixing. Both the coherent and incoherent detection signal intensities appear positive correlation with the solution concentration. These results imply that the liquid-based THz detection scheme could provide a new technique to measure χ(3) and further investigate the physicochemical properties in the THz band for various liquids.
Funder
National Natural Science Foundation of China
National Defense Science and Technology Innovation Fund of the Chinese Academy of Sciences
Strategic Priority Research Program of Chinese Academy of Sciences
National Key Research and Development Program of China
Basic and Applied Basic Research Foundation of Guangdong Province
Air Force Office of Scientific Research
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献