Super-multiplexing excitation spectral microscopy with multiple fluorescence bands

Author:

Chen Kun1ORCID,Li Wan,Xu KeORCID

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

Fluorescence microscopy, with high molecular specificity and selectivity, is a valuable tool for studying complex biological systems and processes. However, the ability to distinguish a large number of distinct subcellular structures in a single sample is impeded by the broad spectra of molecular fluorescence. We have recently shown that excitation spectral microscopy provides a powerful means to unmix up to six fluorophores in a single fluorescence band. Here, by working with multiple fluorescence bands, we extend this approach to the simultaneous imaging of up to ten targets, with the potential for further expansions. By covering the excitation/emission bandwidth across the full visible range, an ultra-broad 24-wavelength excitation scheme is established through frame-synchronized scanning of the excitation wavelength from a white lamp via an acousto-optic tunable filter (AOTF), so that full-frame excitation-spectral images are obtained every 24 camera frames, offering superior spectral information and multiplexing capability. With numerical simulations, we validate the concurrent imaging of 10 fluorophores spanning the visible range to achieve exceptionally low (∼0.5%) crosstalks. For cell imaging experiments, we demonstrate unambiguous identification of up to eight different intracellular structures labeled by common fluorophores of substantial spectral overlap with minimal color crosstalks. We thus showcase an easy-to-implement, cost-effective microscopy system for visualizing complex cellular components with more colors and lower crosstalks.

Funder

David and Lucile Packard Foundation

National Institute of General Medical Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3