Enabling rotary atomic layer deposition for optical applications

Author:

Kochanneck Leif1,Rönn John2,Tewes Andreas13,Hoffmann Gerd-Albert14,Virtanen Sauli2,Maydannik Philipp2,Sneck Sami2,Wienke Andreas14ORCID,Ristau Detlev1453

Affiliation:

1. Laser Zentrum Hannover e.V.

2. Beneq Oy

3. Laseroptik GmbH

4. Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines)

5. Institute of Quantum Optics

Abstract

Atomic layer deposition (ALD) has been proven as an excellent method for depositing high-quality optical coatings due to its outstanding film quality and precise process control. Unfortunately, batch ALD requires time-consuming purge steps, which leads to low deposition rates and highly time-intensive processes for complex multilayer coatings. Recently, rotary ALD has been proposed for optical applications. In this, to the best of our knowledge, novel concept, each process step takes place in a separate part of the reactor divided by pressure and nitrogen curtains. To be coated, substrates are rotated through these zones. During each rotation, an ALD cycle is completed, and the deposition rate depends primarily on the rotation speed. In this work, the performance of a novel rotary ALD coating tool for optical applications is investigated and characterized with SiO2 and Ta2O5 layers. Low absorption levels of <3.1ppm and <6.0ppm are demonstrated at 1064 nm for around 186.2 nm thick single layers of Ta2O5 and 1032 nm SiO2, respectively. Growth rates up to 0.18 nm/s on fused silica substrates were achieved. Furthermore, excellent non-uniformity is also demonstrated, with values reaching as low as ±0.53% and ±1.07% over an area of 135×60mm for Ta2O5 and SiO2, respectively.

Funder

European Regional Development Fund

German Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3