Affiliation:
1. University of Shanghai for Science and Technology
2. Beihang University
3. Fuzhou University
Abstract
Graphene has unique advantages in ultrabroadband detection. However, nowadays graphene-based photodetectors cannot meet the requirements for practical applications due to their poor performance. Here, we report a graphene−silicon−graphene Schottky junction photodetector assisted by field effect. Two separate graphene sheets are located on both sides of the n-doped silicon to form two opposite lateral series heterojunctions with silicon, and a transparent top gate is designed to modulate the Schottky barrier. Low doping concentration of silicon and negative gate bias can significantly raise the barrier height. Under the combined action of these two measures, the barrier height increases from 0.39 eV to 0.77 eV. Accordingly, the performance of the photodetector has been greatly improved. The photoresponsivity of the optimized device is 2.6 A/W at 792 nm, 1.8 A/W at 1064 nm, and 0.42 A/W at 1550 nm, and the on/off photo-switching ratio reaches 104. Our work provides a feasible solution for the development of graphene-based optoelectronic devices.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Beijing Nova Program
Beijing Municipal Natural Science Foundation
Fujian provincial projects
Mindu projects
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献