Quantitative phase imaging based on polarization encoding

Author:

Cui ShengweiORCID,Gao Shan,Li Changheng,Zhang Wei,Yao X. Steve1ORCID

Affiliation:

1. NuVision Photonics, Inc.

Abstract

Most optical characterization methods rely on measuring the complex optical fields emerging from the interaction between light and material systems. Nevertheless, inherent scattering and absorption cause ambiguities in both interferometric and noninterferometric attempts to measure phase. Here we demonstrate that the complete information about a probe optical field can be encoded into the states of polarization, and develop a topography measurement method by blindly varying the ambient refractive index surrounding the sample in a wedged cuvette, which is capable of simultaneously measuring the thickness and the ambient refractive index of the sample in real time, as well as extending the measurement range of the sample thickness. With the method, we have successfully measured the topography of a 136.7 µm thick coverslip by blindly changing the ambient refractive index by 0.001246, resulting in the thickest sample characterization ever achieved by quantitative phase imaging, to the best of our knowledge. An efficient and complete characterization of optical fields is critical for any high-resolution imaging approach and the technique demonstrated here should prove attractive for applications ranging from microscopy to remote sensing. Thanks to the high precision and fast response speed, this method may pave a new way for measuring the topography of the thick samples, such as biological tissues.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3