Affiliation:
1. National Institutes of Health
2. PSL University
Abstract
We present a novel method that can assay cellular viability in real-time using supervised machine learning and intracellular dynamic activity data that is acquired in a label-free, non-invasive, and non-destructive manner. Cell viability can be an indicator for cytology, treatment, and diagnosis of diseases. We applied four supervised machine learning models on the observed data and compared the results with a trypan blue assay. The cell death assay performance by the four supervised models had a balanced accuracy of 93.92 ± 0.86%. Unlike staining techniques, where criteria for determining viability of cells is unclear, cell viability assessment using machine learning could be clearly quantified.
Funder
National Institutes of Health
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献