Optimization of phase contrast imaging with a nano-focus x-ray tube

Author:

Dierks HannaORCID,Dreier Till12ORCID,Krüger Robin13ORCID,Bech Martin1ORCID,Wallentin JesperORCID

Affiliation:

1. Lund University

2. Excillum AB

3. Technische Universität Berlin

Abstract

Propagation-based phase contrast imaging with a laboratory x-ray source is a valuable tool for studying samples that show only low absorption contrast, either because of low density, elemental composition, or small feature size. If a propagation distance between sample and detector is introduced and the illumination is sufficiently coherent, the phase shift in the sample will cause additional contrast around interfaces, known as edge enhancement fringes. The strength of this effect depends not only on sample parameters and energy but also on the experimental geometry, which can be optimized accordingly. Recently, x-ray lab sources using transmission targets have become available, which provide very small source sizes in the few hundred nanometer range. This allows the use of a high-magnification geometry with a very short source–sample distance, while still achieving sufficient spatial coherence at the sample position. Moreover, the high geometrical magnification makes it possible to use detectors with a larger pixel size without reducing the image resolution. Here, we explore the influence of magnification on the edge enhancement fringes in such a geometry. We find experimentally and theoretically that the fringes become maximal at a magnification that is independent of the total source–detector distance. This optimal magnification only depends on the source size, the steepness of the sample feature, and the detector resolution. A stronger influence of the sample feature on the optimal magnification compared to low-magnification geometries is observed.

Funder

Horizon 2020 Framework Programme

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Stiftelsen Olle Engkvist Byggmästare

Crafoordska Stiftelsen

NanoLund, Lunds Universitet

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3