Affiliation:
1. Northwestern Polytechnical University
Abstract
High-quality denoising of optical interference images usually requires preliminary prediction of the noise level. Although blind denoising can filter the image at the pixel level without noise prediction, it inevitably loses a significant amount of phase information. This paper proposes a fast and high-quality denoising algorithm for optical interference images that combines the merits of a principal component analysis (PCA) and residual neural networks. The PCA is used to analyze the image noise and, in turn, establishes an accurate mapping between the estimated and true noise levels. The mapping helps to select a suitable residual neural network model for image processing, which maximizes the retention of image information and reduces the effect of noise. In addition, a comprehensive evaluation factor to account for the time complexity and denoising effect of the algorithm is proposed, since time complexity can be a dominant concern in some cases of actual measurement. The performance of the denoising algorithm and the effectiveness of the evaluation criterion are demonstrated to be high by processing a set of optical interference images and benchmarking with other denoising algorithms. The proposed algorithm outperforms the previously reported counterparts in a specific area of optical interference image preprocessing and provides an alternative paradigm for other denoising problems of optics, such as holograms and structured light measurements.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Ningbo
National Postdoctoral Program for Innovative Talents
Natural Science Basic Research Program of Shaanxi Province
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献