Affiliation:
1. Ocean College, Zhejiang University
2. Second Institute of Oceanography
3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
4. Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences
5. University of Chinese Academy of Sciences
Abstract
The polarization characteristics of water-leaving radiation contain rich information on oceanic constituents. Determining the atmospheric diffuse transmittance is crucial for extracting the polarization information of water-leaving radiation from the radiation acquired by polarimetry satellites at the top of the atmosphere. However, there is still a lack of understanding of the atmospheric diffuse transmittance of the linear polarization component of water-leaving radiation. Here, we first evaluated the difference between the atmospheric diffuse transmittance of the linear polarization component (TQ, TU) and the intensity component (TI) of the water-leaving radiation based on the Ocean Successive Orders with Atmosphere Advanced radiative transfer model. As a consequence, there were apparent differences between TQ, TU and TI. In the case of a large solar zenith angle and a large viewing zenith angle, the difference between TQ, TU and TI will exceed 1. Meanwhile, compared with TI, the oceanic constituents had a prominent interference with TQ and TU, and the sediment concentration had little interference with TQ and TU in low- and medium-turbidity water with respect to the aerosol model, optical thickness, observation geometry, and phytoplankton. Moreover, TQ and TU lookup tables were generated for medium- and low-turbidity water, which laid the foundation for extracting the water-leaving radiation polarization information from the satellite observation polarization signal.
Funder
Southern Marine Science and Engineering Guangdong Laboratory
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Second Institute of Oceanography, State Ocean Administration
Startup Foundation for Hundred-Talent Program of Zhejiang University
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献