Abstract
Reduced resolution of polarized images makes it difficult to distinguish detailed polarization information and limits the ability to identify small targets and weak signals. A possible way to handle this problem is the polarization super-resolution (SR), which aims to obtain a high-resolution polarized image from a low-resolution one. However, compared with the traditional intensity-mode image SR, the polarization SR is more challenging because more channels and their nonlinear cross-links need to be considered as well as the polarization and intensity information need to be reconstructed simultaneously. This paper analyzes the polarized image degradation and proposes a deep convolutional neural network for polarization SR reconstruction based on two degradation models. The network structure and the well-designed loss function have been verified to effectively balance the restoration of intensity and polarization information, and can realize the SR with a maximum scaling factor of four. Experimental results show that the proposed method outperforms other SR methods in terms of both quantitative evaluation and visual effect evaluation for two degradation models with different scaling factors.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献