Quantifying trapping stability of optical tweezers with an external flow

Author:

Xu FengORCID,Yu Yarong1,Liu Yang,Chang Yao,Jiao Wenxiang,Wang Lin,Ho Hopui2,Wu Bei1,Xu FeiORCID,Lu Yanqing,Pang Yuanjie1ORCID,Wang GuanghuiORCID

Affiliation:

1. Huazhong University of Science and Technology

2. The Chinese University of Hong Kong

Abstract

Optical tweezers (OTs) can immobilize and manipulate objects with sizes that span between nano- and micro-meter scales. The manipulating ability of OTs is traditionally characterized by stability factor (S), which can only indicate an empirical “hit-or-miss” process. Additionally, the current quantitative models for trapping stability rarely consider the influence of external flow. In this paper, a comprehensive analysis to quantify the optical trapping stability in a perturbed asymmetric potential well is presented from the perspective of statistics, especially for weak trapping scenarios. Our analytical formulation takes experimentally measurable parameters including particle size, optical power, and spot width as inputs and precisely outputs a statistically relevant mean trapping time. Importantly, this formulation takes into account general and realistic cases including fluidic flow velocity and other perturbations. To verify the model, a back-focal-plane-interferometer-monitored trapping experiment in a flow is set up and the statistical characteristics of trapping time demonstrate good agreement with theoretical predictions. In total, the model quantitatively reveals the effects of external disturbance on trapping time, which will find applications where optical trapping stability is challenged by external perturbations in weak trapping conditions.

Funder

National Natural Science Foundation of China

Social Development Project of Jiangsu Province

Key Technology Research and Development Program of Shandong Province

Innovation Fund of Wuhan National Laboratory for Optoelectronics

1000 Talent Youth Program

General Research Fund from Research Grants Council of HKSAR

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3