Quantization of Goos–Hänchen shift in monolayer graphene under partial and total internal reflection conditions

Author:

Shah Mudasir1,Akbar Ali1,Khan Niaz Ali2,Zaman Quaid3,Iqbal Shahid4,Ali Wajid5,Javed Muhammad6,Shah Muzamil1ORCID

Affiliation:

1. Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS)

2. Kohsar University Murree

3. University of Buner

4. School of Electrical and Electronics Engineering, Chung-Ang University

5. National Center for Nanoscience and Technology

6. University of Malakand

Abstract

We theoretically investigate the Goos-Hänchen (GH) shifts of a reflected light beam from the dielectric interface containing a monolayer graphene sheet in the presence of an external perpendicular magnetic field. Using Kubo formalism we derive the expressions for the magneto-optical (MO) conductivities. Based on the angular spectrum analysis, we calculate and demonstrate that quantized GH shifts on the surface of graphene monolayer can be tuned by varying the intensity of the applied magnetic field and the beam incidence angle. We show that the GH shifts are quantized due to the Landau level (LL) quantization of the magneto-optical conductivities. In the vicinity of Brewster's angle the GH shift exhibit extreme positive or negative peaks around the magneto-excitation photonic energies in the terahertz regime. We discuss the dependence of the GH shifts on the strength of the magnetic field, the incidence angle, chemical potential, and the impinging frequency of the Gaussian beam. We also discuss the GH shifts for partial reflection (PR) and total internal reflection (TIR) conditions. We find that in the total internal reflection geometry, we have giant angular and spatial GH shifts in the vicinity of the Brewster angle as well as near the critical angle. The MO-modulated GH shift in graphene–substrate system provides a new mechanism to realize photonic devices in the terahertz region.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3