Compact structured illumination microscopy with high spatial frequency diffractive lattice patterns

Author:

Zhang CilongORCID,Xu NingORCID,Tan Qiaofeng

Abstract

Structured illumination microscopy (SIM) enables live-cell super-resolution imaging with wide field of view (FOV) and high imaging speed, but the illumination system is usually bulky. With the advantages of small structure and high efficiency, lattice patterns assisted by diffractive optical elements (DOEs) have been used for structured illumination in SIM. But it is still challenging to raise the spatial frequency of diffractive lattice patterns when using traditional DOE design method, and thus the super-resolution imaging performance is restricted. In this paper, we propose a novel design method for DOE to generate lattice patterns with spatial frequency close to the cut-off frequency. It is the first time to obtain a lattice pattern with such high spatial frequency by diffractive optics. Finally, the proposed SIM achieves a lateral resolution of 131 nm at 519 nm fluorescent light while maintaining an original size as a standard inverted fluorescence microscope by only inserting a single well-designed DOE in the illumination optical path, which may promote this compact SIM applied in super-resolution imaging field.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3