Affiliation:
1. V.A. Almazov Federal North-West Medical Research Center
Abstract
Background. The current approach to treatment of acute myeloblastic leukemia (AML) includes the achievement of maximum tumor reduction and, therefore, eradication of a leukemic clone. The goal of the therapy is to achieve undetectable levels of the target gene, except an isolated molecular rearrangement of RUNX1-RUNX1T1. Aim. To estimate the dynamics of the RUNX1-RUNX1T1 level and relevant clinical manifestations during the monitoring of various stages of the program therapy and after its completion. Methods. The article presents a description of 10 cases of AML with isolated RUNX1-RUNX1T1 expression (n = 4) and the expression in combination with different molecular and cytogenetic abnormalities (n = 6). In addition, a long-term monitoring of the gene expression by quantitative determination of RUNX1-RUNX1T1 using a real-time PCR was presented. Results. The incidence of relapses in a group with a decreased RUNX1-RUNX1T1 expression level of >2 log is 75 % as compared to patients with a less significant reduction of the transcript level (with the relapse incidence equal to 0 %) (p = 0.05). The increase of the RUNX1-RUNX1T1 level against the background of bone marrow remission by more than 1 log coincided with a bone marrow relapse within 5-18 weeks. In addition, long-term persistence of a certain transcript level after the completion of a program therapy without relapse is possible. Conclusion. The study analyzed possible molecular background of different clinical outcomes of long-term persistence of the RUNX1-RUNX1T1 transcript that might lead to an individualized approach to AML patients.
Publisher
Practical Medicine Publishing House
Reference56 articles.
1. Bitter MA, Le Beau MM, Rowley JD, et al. Association between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol. 1987; 18(3): 211-25. doi: 10.1016/s0046-8177(87)80002-3
2. Mrozek K, Heinonen K, de la Chapelle A, Bloomfield CD. Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol. 1997; 24(1): 17-31.
3. Rowe D, Cotterill SJ, Ross FM, et al. Cytogenetically cryptic AML1-ETO and CBFbeta-MYH11 gene rearrangement: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol. 2000; 111 (4): 1051-6. doi: 10.1111/j. 1365-2141.2000.02474.x.
4. Downing JR. AML1/CBFbeta transcription complex: its role in normal hematopoiesis and leukemia. Leukemia. 2001; 15(4): 664-5. doi: 10.1038/sj.leu.2402035.
5. Рулина А.В., Спирин П.В., Прасолов В.С. Активированные лейкозные онкогены AML1-ETO и C-KIT: роль в развитии острого миелоидного лейкоза и современные подходы к их ингибированию. Успехи биологической химии. 2010; 50: 349-86. [Rulina AV, Spirin PV, Prasolov VS. Activated leukemic AML1-ETO и C-KIT oncogenes: their role in the development of acute myeloid leukemia and modern approaches to their inhibition. Uspekhi biologicheskoi khimii. 2010; 50: 349-86. (In Russ)]
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献