Short-term forecasting models for automated data backup system: segmented regression analysis

Author:

Pereira Leandro DuarteORCID,Balestrassi Pedro PauloORCID,Paes Vinicius de CarvalhoORCID,Paiva Anderson Paulo deORCID,Peruchi Rogério SantanaORCID,Mendes Ronã Rinston AmauriORCID

Abstract

The Information and Communication Technology (ICT) becomes a critical area to business success; organizations need to adopt additional measures to ensure the availability of their services. However, such services are often not planned, analyzed and monitored, which impacts the assurance quality to customers. The backup is the service addressed in this study, with the object of study of the automated data backup systems in operation at the Federal University of Itajuba - Brazil. The main objective of this research was to present a logical sequence of steps to obtain short-term forecast models that estimate the point at which each recording media reaches its storage capacity limit. The input data was collected in the metadata generated by the backup system, with 2 years data window. For the implementation of the models, the simple univariate linear regression technique was employed in conjunction, in some cases, with the simple segmented linear regression. In order to discover the breakpoint, a targeted approach to residual analysis was applied. The results obtained by the iterative implementation of the proposed algorithm showed adherence to the characteristics of the analyzed series, with accuracy measures, regression significance, normality residual through control charts, model adjustment, among others. As a result, an algorithm was developed for integration into automated backup systems using the methodology described in this study.

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3