Heuristic modeling of reflection in reflexive games

Author:

Markova G. M.1,Bartsev S. I.1

Affiliation:

1. School of Fundamental Biology and Biotechnology, Siberian Federal University ; Biophysics Institute of the Siberian Branch of the RAS – Division of Federal Research Center «Krasnoyarsk Scientific Center of the Siberian Branch of the RAS» Krasnoyarsk

Abstract

The functioning of a subject in a changing environment is most effective from the point of view of survival if the subject can form, maintain and use internal representations of the external world for decision-making. These representations are also called reflection in a broad sense. Using it, one can win in reflexive games since an internal representation of the enemy allows predicting their future moves. The goal is to assess the reflexive potential of heuristic model objects – artificial neural networks – in the reflexive games “Even-Odd” (or “Matching pennies”) and “Rock-Paper-Scissors”. We used homogeneous fully connected neural networks of small sizes (from 8 to 45 neurons). Games were played between neural networks with different configurations and parameters (size, step size for modifying weight coefficients). A set of reflexivity criteria is presented, corresponding to different levels of consideration: neuronal, behavioral, formal. The transitivity of formal success in the game is shown. The most successful configurations, however, may not meet other criteria of reflexivity. We hypothesize that the best compliance with the criteria and, as a consequence, universal success in reflection tasks is achievable for heterogeneous configurations with a structure in which the formation of hierarchical systems of attractors is possible.

Publisher

Pyatigorsk State University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3