Early development in Kelletia kelletii (Forbes, 1850) (Gastropoda: Buccinidae), an Eastern Pacific gastropod with planktonic larvae

Author:

Vendetti Jann EORCID

Abstract

Kelletia kelletii (Forbes, 1850) is an intertidal to subtidal marine buccinid gastropod with a range from California, USA, to Baja California, Mexico. Many characteristics of its mating behavior, general life history, and larval biology are known, but details about its larval morphology and behavior are lacking. Here, aspects of its larval development and morphology during early ontogeny are chronicled, including larval velar form and function, asymmetrical development, particle ingestion, larval yolk reserves, and larval shell morphology. Snail oviposition behavior was observed in aquaria and egg capsules were dissected at different stages of development and examined under optical and scanning electron microscopy. Egg capsules had undeveloped eggs and/or embryos that were not ingested by K. kelletii larvae. Hatching time (natural excapsulation) varied between 37 to 55 d depending on water conditions, and endogenous yolk reserves were present in most veligers at capsule emergence. Pre-hatching veligers could swim in the plankton if excapsulated at 27 d and had symmetrical velar lobes but different sized cephalic tentacles. At 2.5 weeks in the plankton, both cephalic tentacles and velar lobes were asymmetrical, with those on the larvae’s right larger than those on their left. Larval shells were brittle and poorly mineralized at excapsulation but fully mineralized with an apertural beak and proto-siphonal canal by 2.5 weeks in the plankton. Particle capture and transport through the velar lobes to the mouth was possible in pre-hatching veligers, but ingestion only occurred in emerged veligers when yolk stores were depleted. Chronicling early ontogeny and its sequence, as in this study, is essential to the understanding of larval development and its evolution in gastropods, and to comparative studies of larval biology in the Buccinidae.

Publisher

Instituto de Investigaciones Oceanologicas

Subject

Aquatic Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3