To the question of concrete creep in the soil environment

Author:

Ter-Martirosyan Zaven G.1ORCID,Bakhmisov Viktor V.2

Affiliation:

1. Moscow State University of Civil Engineering (National Research University) (MGSU)

2. Gersevanov Research Institute of Bases and Underground Structures (NIIOSP) — “Research Center of Construction” JSC

Abstract

Introduction. Concrete creep coupled with specific soil properties represent a problem for the analysis of reinforced concrete structures in geotechnical engineering. The mission of this research is to make a problem statement and to outline its potential solutions. Materials and methods. In the course of the research, the finite element method was applied and the review of works, covering various problem aspects, was performed. Results. Concrete creep in respect of a diaphragm wall is most vividly manifested in deflections and stresses in struts; as for piles, concrete creep is manifested by the longitudinal axial force distribution along the length. The co-authors have demonstrated that is necessary to single out the excavations device under bentonite slurry protection from the viewpoint of the construction technology. In this case, a 5–10 mm thick water-saturated filter cake is formed at the contact between soil and concrete. The filter cake retains its permanent water penetrability at some level that depends on pressure and injection time; therefore, concrete in trench cannot be considered isolated from filtration water flows. Following the concrete mix casting into the trench, water saturated filter cake is consolidated, and this enables the authors to make a conclusion about its resistance to vapour penetration. Conclusions. If water saturation is equal to Sr > 0.5–0.6 and if excavation works are performed under the protection of the bentonite slurry, relative air humidity of soil RH can be considered to be equal to 100 %, and if water saturation Sr < 0.5–0.6, RH needs to be analysed. Identification of concrete moisture content depending on relative air humidity, the groundwater filtration flow and influence of the filter cake at the contact between ground and concrete make it possible to take account of the effect of soil conditions on concrete creep.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3