The analysis of dependence of the vibration frequency of a space cantilever truss on the number of panels

Author:

Kirsanov Mikhail N.1ORCID,Vorobyev Oleg V.1ORCID

Affiliation:

1. National Research University “Moscow Power Engineering Institute” (MPEI)

Abstract

Introduction. The first (lowest) frequency of natural vibrations of a structure is one of its most important dynamic characteristics. Analytical solutions supplement numerical ones; they can be efficiently used to perform a rapid assessment of properties of structures, to analyze and optimize constructions and to test numerical results. A space cantilever truss consisting of three planar trusses with a rectangular grid is considered in the article. The objective is to find the analytical dependence between the frequency of natural vibrations of a structure and the number of panels. It is assumed that the truss mass is distributed among the joints. Only the vertical mass displacement is taken into account. Materials and methods. Forces, arising in cantilever rods, are calculated by the Maple software as symbolic expressions, and the method of joint isolation is used here. The stiffness matrix is identified using the Mohr integral. Rods are assumed to be elastic, they have identical stiffness. The lower value of the vibration frequency is determined using the Dunkerley method. The final calculation formula used to identify the value of the vibration frequency is derived using the method of induction applied to a series of analytical solutions developed for trusses with a consistently increasing number of panels. When common members of sequences are found, genfunc operators of the Maple system are used. The analytical solution is compared with the numerical solution in terms of the first frequency using the analysis of the system spectrum featuring many degrees of freedom. The eigenvalues of the characteristic matrix are identified using the Eigenvalues operator from the Linear Algebra package. Results. The comparison between the analytical values and the numerical solution shows that the Dunkerley method ensures the accuracy varying from 20 % for a small number of panels to 3 % if the number of panels exceeds ten. The size of the structure, the weight and stiffness of rods have little effect on the accuracy of the obtained values. Conclusions. The lowest value obtained using the Dunkerley method in the form of a fairly compact formula has good accuracy, its application to a space structure with an arbitrary number of panels has a polynomial form equal to the number of panels, and it can be used in practical calculations.

Publisher

Moscow State University of Civil Engineering

Reference24 articles.

1. Tinkov D.V. Analytical solutions of problems on natural frequencies of oscillations of regular rod systems : dissertation abstract candidate of technical sciences. Moscow, National Research University MPEI, 2019; 20. (rus.).

2. Vorobyev O. Bilateral analytical estimation of first frequency of a plane truss. Construction of Unique Buildings and Structures. 2020; 92:9204. DOI: 10.18720/CUBS.92.4

3. Hutchinson R.G., Fleck N.A. Microarchitectured cellular solids — the hunt for statically determinate periodic trusses. ZAMM. 2005; 85(9):607-617. DOI: 10.1002/zamm.200410208

4. Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss. Journal of the Mecha­nics and Physics of Solids. 2006; 54(4):756-782. DOI: 10.1016/j.jmps.2005.10.008

5. Zok F.W., Latture R.M., Begley M.R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 2016; 96:184-203. DOI: 10.1016/j.jmps.2016.07.007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3