Deep Learning Based Two-Dimensional Ultrasound for Follicle Monitoring in Infertility Patients

Author:

Liang Xiaowen,Zeng Fengyi,Li Haoming,Li Yuewei,Lin Yan,Cai Kuan,Ni Dong,Chen Zhiyi

Abstract

Abstract Background: A two-dimensional (2D) ultrasound examination is the primary technique for follicle monitoring, but 2D ultrasound follicle monitoring has significant inter- and intra-observer variability in the measurement of follicle diameter. The aim of this study was to propose a novel deep learning-based automated model for accurate 2D ultrasound follicle monitoring and validate the reliability and repeatability in clinical practice. Methods: A prospective trial including 300 infertile women undergoing ovulation induction (single follicle cycles) or controlled ovarian hyperstimulation (multiple follicle cycles) was conducted in the reproductive center. After 2D ultrasound image acquisition, the mean diameter of each targeted follicle was measured using an automated model, experts, and a novice. Designating the expert assessment as the gold standard, the reliability and repeatability of the automated model for single and multiple follicle cycles were evaluated using the intraclass correlation coefficient and Bland-Altman plots. Results: A total of 228 and 1065 follicles from single and multiple follicle cycles, respectively, were included. The accurate recognition rate of follicle boundaries using the automated model was 0.931. The inter-observer variability of follicle mean diameter measurements in single and multiple follicle cycles were 0.970 and 0.984 for the automated model and experts, and 0.965 and 0.978 for a novice and experts, respectively. Bland-Altman plots showed that 95% limits of agreement for follicle diameter measurement between the automated model and experts (−2.02 to 2.39 mm and −0.68 to 1.50 mm) was lower than a novice and experts (−1.69 to 2.74 mm and −0.58 to 1.73 mm) for both single and multiple follicle cycles. The intraclass correlation (ICC) of follicle diameters ≥10 mm calculated by the automated model was significantly higher than follicle diameters <10 mm in multiple follicle cycles (0.834 vs. 0.609). There were no significant differences between the two groups in single follicle cycles (0.967 vs. 0.970). Conclusion: A deep learning-based automated model provides an accurate and fast approach for novices to improve the reliability and receptivity of 2D ultrasound follicle monitoring, especially in multiple follicle cycles and for follicles with a mean diameter ≥ 10 mm.

Publisher

Compuscript, Ltd.

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Biomedical Engineering,Biochemistry,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3