HER2-targeting Peptide Drug Conjugate with Better Penetrability for Effective Breast Cancer Therapy

Author:

Liang Yixia,Lei Rong,Tan Jiabao,Fang Junyue,Yu Lin,Tan Shiyu,Nie Yan,Jiang Qiongchao,Xiao Xiaoyun,Saw Phei Er

Abstract

Abstract Antibody-drug conjugates (ADCs) have the following advantages: target specificity; wide therapeutic index; and prolonged circulation half-life. A key limitation of ADCs, however, is the large size (~150 kDa), which markedly slows diffusion through the interstitium of solid tumors and prevents efficient penetration. To address the size issue of ADCs in targeted drug delivery, we developed a HER2-targeting peptide-mertansine conjugate (HER2-TPMC) and conducted a head-to-head comparison with HER2-targeting antibody-mertansine conjugate (HER2-TAMC) as a possible alternative for high-penetration breast cancer therapeutics. As expected, a pharmacokinetic (PK) assay revealed that HER2-TP had lower levels persisting in the circulation after 1 h (~75%) compared to 85% of HER2-targeting antibody (HER2-TA). The cellular cytotoxic effect of HER2-TPMC was similar to HER2-TAMC in the HER2+ BT474 breast cancer cell line, thus demonstrating similar bioactivity of both conjugates. HER2-TPMC not only revealed higher uptake and specificity in in vitro 3D spheroid cultures compared to the parental drug, mertansine, but HER2-TPMC also had a significant retention in the spheroids. This finding was in stark contrast to HER2-TAMC, a large-sized conjugate which was not able to penetrate the spheroid barrier, thus resulting minimal penetration. In vivo tumoral uptake in a BT474 orthotopic model indicated increased tumor uptake and penetration of HER2-TP compared to parental drug and HER2-TAMC. To summarize, we successfully developed a HER2-targeting peptide-mertansine conjugate with specific cellular uptake that resulted in longer retention times in vitro and in vivo. HER2-TPMC (~5 kDa in size) exhibited rapid tissue penetration and enhanced tumoral uptake and retention in vitro and in vivo. Therefore, HER2-TPMC is a reasonable alternative for HER2-positive cancer chemotherapeutics.

Publisher

Compuscript, Ltd.

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Biomedical Engineering,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3