Immune Infiltration in Atherosclerosis is Mediated by Cuproptosis-Associated Ferroptosis Genes

Author:

Zhang Boyu,Li Shuhan,Liu Hanbing,Wang Dongze,Gao Ang,Wang Yihan,Gao Zhiyuan,Hou Tongyu,Xu Qian

Abstract

Aims: In this study, we aimed to identify cuproptosis-associated ferroptosis genes in the atherosclerosis microarray of the Gene Expression Omnibus (GEO) database and to explore hub gene-mediated immune infiltration in atherosclerosis. Background: Immune infiltration plays a crucial role in atherosclerosis development. Ferroptosis is a mode of cell death caused by the iron-dependent accumulation of lipid peroxides. Cuproptosis is a recently discovered type of programmed cell death. No previous studies have examined the mechanism of cuproptosis-associated ferroptosis gene regulation in immune infiltration in atherosclerosis. Methods: We searched the qualified atherosclerosis gene microarray in the GEO database, integrated it with ferroptosis and cuproptosis genes, and calculated the correlation coefficients. We then obtained the cuproptosis-associated ferroptosis gene matrix and screened differentially expressed genes. Subsequently, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and protein–protein interaction network analysis of differentially expressed genes. We also screened hub genes according to the Matthews correlation coefficient (MCC) algorithm. We conducted enrichment analysis of hub genes to explore their functions and predict related microRNAs (P<0.05). We also used the single-sample gene set enrichment analysis (ssGSEA) algorithm to analyze the relationships between hub genes and immune infiltration, and used immune-associated hub genes to construct a risk model. Finally, we used the drug prediction results and molecular docking technology to explore potential therapeutic drugs targeting the hub genes. Results: Seventy-eight cuproptosis-associated ferroptosis genes were found to be involved in the cellular response to oxidative and chemical stress, and to be enriched in multiple pathways, including ferroptosis, glutathione metabolism, and atherosclerosis. Ten hub genes were identified with the MCC algorithm; according to the ssGSEA algorithm, these genes were closely associated with immune infiltration, thus indicating that cuproptosis-associated ferroptosis genes may participate in atherosclerosis by mediating immune infiltration. The receiver operating characteristic curve indicated that the model had a good ability to predict atherosclerosis risk. The results of drug prediction (adjusted P<0.001) and molecular docking showed that glutathione may be a potential therapeutic drug that targets the hub genes. Conclusion: Cuproptosis-associated ferroptosis genes are associated with immune infiltration in atherosclerosis.

Publisher

Compuscript, Ltd.

Subject

General Medicine

Reference73 articles.

1. Inflammation, oxidative stress, senescence in atherosclerosis: thioredoxine-1 as an emerging therapeutic target;K El Hadri;Int J Mol Sci,2021

2. Age related differences in acute coronary syndrome: an observation at a central hospital in Vietnam;DT Anh;J Transl Int Med,2021

3. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention;P Kong;Signal Transduct Target Ther,2022

4. Atherosclerosis and immunity;S Xiao;Chin J Atheroscler,2022

5. Immunity and atherosclerosis;H Zhao;For Med (Immunol Div),1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3