Machine Learning Methods in Real-World Studies of Cardiovascular Disease

Author:

Zhou Jiawei,You Dongfang,Bai Jianling,Chen Xin,Wu Yaqian,Wang Zhongtian,Tang Yingdan,Zhao Yang,Feng Guoshuang

Abstract

Objective: Cardiovascular disease (CVD) is one of the leading causes of death worldwide, and answers are urgently needed regarding many aspects, particularly risk identification and prognosis prediction. Real-world studies with large numbers of observations provide an important basis for CVD research but are constrained by high dimensionality, and missing or unstructured data. Machine learning (ML) methods, including a variety of supervised and unsupervised algorithms, are useful for data governance, and are effective for high dimensional data analysis and imputation in real-world studies. This article reviews the theory, strengths and limitations, and applications of several commonly used ML methods in the CVD field, to provide a reference for further application. Methods: This article introduces the origin, purpose, theory, advantages and limitations, and applications of multiple commonly used ML algorithms, including hierarchical and k-means clustering, principal component analysis, random forest, support vector machine, and neural networks. An example uses a random forest on the Systolic Blood Pressure Intervention Trial (SPRINT) data to demonstrate the process and main results of ML application in CVD. Conclusion: ML methods are effective tools for producing real-world evidence to support clinical decisions and meet clinical needs. This review explains the principles of multiple ML methods in plain language, to provide a reference for further application. Future research is warranted to develop accurate ensemble learning methods for wide application in the medical field.

Publisher

Compuscript, Ltd.

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3