COMPARISON OF MACHINE LEARNING ALGORITHMS FOR HEART DISEASE PREDICTION

Author:

Abdulhussein Ayat Bahaa1ORCID,Bilgin Turgay Tugay2ORCID

Affiliation:

1. BURSA TECHNICAL UNIVERSITY

2. BURSA TEKNİK ÜNİVERSİTESİ

Abstract

Machine learning, one of the most well-known applications of artificial intelligence, is altering the world of research. The aim of this study is to generate predictions for Heart Disease Prediction (HDP) by employing effective machine learning approaches and to predict whether an individual has heart disease. The primary objective is to evaluate the predictive accuracy of various machine learning algorithms in predicting the presence or absence of heart disease. The KNIME data analysis program has been selected, and overall accuracy is chosen as the primary indicator to assess the effectiveness of these strategies. Utilizing details such as chest pain, cholesterol levels, age, and other factors, along with different machine learning technologies such as K Nearest Neighbor (KNN), Naive Bayes, and Logistic Regression, a dataset of 319,796 patient records with 18 attributes was utilized. Naive Bayes, K Nearest Neighbor (KNN), and Logistic Regression were employed as machine learning techniques, and their prediction accuracies were compared. The application results indicate that the logistic regression approach outperforms the K Nearest Neighbor method and the Naive Bayes method in terms of predicting accuracy for heart disease. The prediction accuracy of K-NN is 90.77%, Naive Bayes is 86.633%, and logistic regression is 91.60%. In conclusion, machine learning algorithms can accurately identify heart disease. The results suggest that these methods could assist doctors and heart surgeons in determining the likelihood of a heart attack in a patient.

Publisher

Istanbul Ticaret Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3