1. [1] Acharya, U.R., Swapna, G., Sree, S. V, Molinari F., et al.: A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol. Cancer Res. & Treat., vol. 13, no. 4, pp. 289-301, 2014.
2. [2] Brinker, T.J., Hekler, A., Enk, A.H., Klode, J., Hauschild, A., Berking, C., et al.: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer, vol. 113, pp. 47-54, 2019.
3. [3] Buda, M., Wildman-Tobriner, B., Hoang, J.K., Thayer, D., Tessler, F.N., Middleton, W.D., Mazurowski, M.A.: Management of thyroid nodules seen on us images: Deep learning may match performance of radiologists. Radiology, vol. 292, no. 3, pp. 695-701, 2019.
4. [4] Dobruch-Sobczak, K., Adamczewski, Z., Dedecjus, M., Lewinski, A., Migda, B., Ruchała,' M., Skowronska-Szcze' sniak, A., Szczepanek-Parulska, E., Zajkowska, K.,' Zyłka, A.:˙Summary of meta-analyses of studies involving TIRADS classifications (EU-TIRADS, ACR-TIRADS, and K-TIRADS) in evaluating the malignant potential of focal lesions of the thyroid gland. J. Ultrason., vol. 22, pp. e121-e129, 2022.
5. [5] Dov, D., Kovalsky, S.Z., Cohen, J., Range D. E., et al.: Thyroid cancer malignancy prediction from whole slide cytopathology images. in Machine Learning for Healthcare Conference, pp. 553-570, 2019.