Dosimetric Impact of Air Pockets in the Vaginal Cuff Brachytherapy Using Model-based Dose Calculation Algorithm

Author:

Puriparthi Lakshmi Venkataramana1,Talluri Anil Kumar1,Akkineni Naga Prasanthi2,Bajwa Harjot Kaur3,Tumu Venkatappa Rao4,Sresty N. V. N. Madhusudhana1,Alluri Krishnam Raju2

Affiliation:

1. Department of Radiation Physics, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India

2. Department of Radiation Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India

3. Department of Radiation Oncology, American Oncology Institute, Hyderabad, Telangana, India

4. Department of Physics, National Institute of Technology, Warangal, Telangana, India

Abstract

Background: Endometrial cancer is the most common disease of the female reproductive system. Vaginal cuff brachytherapy (VCB) has intrinsic advantages compared to external beam therapy when treated with radiation. A single-channel cylinder is a standard applicator in VCB. The present study aims to estimate a change in the dose to vaginal mucosa due to air pockets between the cylinder and vaginal mucosa by calculating with the Acuros BV algorithm and comparing it to the Task Group 43 (TG-43) algorithm. Materials and Methods: Patients who presented with air packets were included retrospectively. For each patient, three plans were created: the first plan used TG-43, the second plan used dose recalculation with Acuros BV, and the third plan was generated by re-optimization by Acuros BV. On the same axial computed tomography image, the point doses at the cylinder’s surface and the displaced mucosa were recorded and the ratios were then estimated. Results: The average volume of air pockets was 0.08 cc (range of 0.01–0.3 cc), and 84% of air pockets displaced the vaginal mucosa by ≥0.2 cm. The average ratios of dose were 0.77 ± 0.09 (1 standard deviation [SD]) and 0.78 ± 0.09 (1 SD) for TG-43 and Acuros BV algorithms, respectively. Due to the air pocket, mucosa received a reduced dose by an average of 22.72% and an average of 23.29% for TG-43 and Acuros BV, respectively. The maximum displacement of mucosa and the ratio of doses were negatively correlated for both. In the Optimized Acuros BV plan, total dwell time increased by 1.8% but no considerable change in the dose ratios. Conclusion: The calculated dose of mucous membrane forced out of the cylinder surface by air pockets by the Acuros BV algorithm was nonsignificantly different from TG-43. Therefore, even in the presence of air pockets, the TG-43 algorithm for calculating the VCB dose is appropriate.

Publisher

Medknow

Subject

Radiology, Nuclear Medicine and imaging,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3