Determinants of public institutional births in India: An analysis using the National Family Health Survey (NFHS-5) factsheet data

Author:

Kar Rohan1,Wasnik Anurag Piyamrao2

Affiliation:

1. Doctoral Researcher, Marketing Area, Indian Institute of Management Ahmedabad. Gujarat, India

2. Doctoral Researcher, Innovation and Strategy, Beedie School of Business, Simon Fraser University (SFU), Vancouver, Canada

Abstract

ABSTRACT Background: Institutional births ensure deliveries happen under the supervision of skilled healthcare personnel in an enabling environment. For countries like India, with high neonatal and maternal mortalities, achieving 100% coverage of institutional births is a top policy priority. In this respect, public health institutions have a key role, given that they remain the preferred choice by most of the population, owing to the existing barriers to healthcare access. While research in this domain has focused on private health institutions, there are limited studies, especially in the Indian context, that look at the enablers of institutional births in public health facilities. In this study, we look to identify the significant predictors of institutional birth in public health facilities in India. Method: We rely on the National Family Health Survey (NFHS-5) factsheet data for analysis. Our dependent variable (DV) in this study is the % of institutional births in public health facilities. We first use Welch’s t-test to determine if there is any significant difference between urban and rural areas in terms of the DV. We then use multiple linear regression and partial F-test to identify the best-fit model that predicts the variation in the DV. We generate two models in this study and use Akaike’s Information Criterion (AIC) and adjusted R2 values to identify the best-fit model. Results: We find no significant difference between urban and rural areas (P = 0.02, α =0.05) regarding the mean % of institutional births in public health facilities. The best-fit model is an interaction model with a moderate effect size (Adjusted R2 = 0.35) and an AIC of 179.93, lower than the competitive model (AIC = 183.56). We find household health insurance (β = -0.29) and homebirth conducted under the supervision of skilled healthcare personnel (β = -0.56) to be significant predictors of institutional births in public facilities in India. Additionally, we observe low body mass index (BMI) and obesity to have a synergistic impact on the DV. Our findings show that the interaction between low BMI and obesity has a strong negative influence (β = -0.61) on institutional births in public health facilities in India. Conclusion: Providing households with health insurance coverage may not improve the utilisation of public health facilities for deliveries in India, where other barriers to public healthcare access exist. Therefore, it is important to look at interventions that minimise the existing barriers to access. While the ultimate objective from a policy perspective should be achieving 100% coverage of institutional births in the long run, a short-term strategy makes sense in the Indian context, especially to manage the complications arising during births outside an institutional setting.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3