Optimizing Positive End-Expiratory Pressure Based on Intra-Abdominal Pressure in Patients with Acute Respiratory Failure

Author:

Hancı P1,Demir ET2,Şekerci B3,İnal V4

Affiliation:

1. Department of Pulmonology Medicine, Division of Intensive Care, Trakya University Faculty of Medicine, Edirne, Türkiye

2. Department of Anaesthesiology, Division of Intensive Care, Atatürk State Hospital, Turkish Ministry of Health, Aydın, Türkiye

3. Department of General Surgery, Keşan State Hospital, Turkish Ministry of Health, Edirne, Türkiye

4. Department of Internal Medicine, Division of Intensive Care, Trakya University Faculty of Medicine, Edirne, Türkiye

Abstract

Background: Positive end-expiratory pressure (PEEP) is a crucial component of mechanical ventilation to improve oxygenation in critically ill patients with respiratory failure. The interaction between abdominal and thoracic compartment pressures is known well. Especially in intra-abdominal hypertension, lower PEEP may cause atelectotrauma by repetitive opening and closing of alveoli. Aim: In this study, it was aimed to investigate the effect of PEEP adjustment according to the intra-abdominal pressure (IAP) on oxygenation and clarify possible harms. Method: Patients older than 18 were mechanically ventilated due to hypoxemic respiratory failure and had normal IAP (<15 mmHg) included in the study. Patients with severe cardiovascular dysfunction were excluded. The following PEEP levels were applied: PEEPzero of 0 cmH2O, PEEPIAP/2 = 50% of IAP, and PEEPIAP = 100% of IAP. After a 30-minute equilibration period, arterial blood gases and mean arterial pressures were measured. Results: One hundred thirty-eight patients (mean age 66.5 ± 15.9, 56.5% male) enrolled on the study. The mean IAP was 9.8 ± 3.4. Seventy-nine percent of the patients’ PaO2/FiO2 ratio was under 300 mmHg. Figure 1 shows the change in PaO2/FiO2 ratio, PaCO2, PPlato, and MAP of the patients according to the PEEP levels. Overall increases were detected in the PaO2/FiO2 ratio (P < 0.001) and Pplato (P < 0.001), while PaCO2 and MAP did not change after increasing PEEP gradually. Pairwise analyses revealed differences in PaO2/FiO2 between PEEPzero (186.4 [85.7–265.8]) and PEEPIAP/2 (207.7 [101.7–292.9]) (t = -0.77, P < 0.001), between baseline and PEEPIAP (236.1 [121.4–351.0]) (t = -1.7, P < 0.001), and between PEEPIAP/2 and PEEPIAP (t = -1.0, P < 0.001). Plato pressures were in the safe range (<30 cmH2O) at all three PEEP levels (PEEPzero = 12 [10–15], PEEPIAP/2 = 15 [13–18], PEEPIAP = 17 [14–22]). Conclusion: In patients with acute hypoxemic respiratory failure and mechanically ventilated, PEEP adjustment according to the IAB improves oxygenation, especially in the settings of the limited source where other PEEP titration methods are absent.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3