Transforming growth factor-beta 1 enhances discharge activity of cortical neurons

Author:

Ren Zhihui1,Li Tian1,Liu Xueer1,Zhang Zelin1,Chen Xiaoxuan1,Chen Weiqiang2ORCID,Li Kangsheng1ORCID,Sheng Jiangtao1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China

2. Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China

Abstract

JOURNAL/nrgr/04.03/01300535-202502000-00031/figure1/v/2024-06-06T062529Z/r/image-tiff Transforming growth factor-beta 1 (TGF-β1) has been extensively studied for its pleiotropic effects on central nervous system diseases. The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved. Voltage-gated sodium channels (VGSCs) are essential ion channels for the generation of action potentials in neurons, and are involved in various neuroexcitation-related diseases. However, the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear. In this study, we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice. We found that TGF-β1 increased VGSC current density in a dose- and time-dependent manner, which was attributable to the upregulation of Nav1.3 expression. Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase (PD98059), p38 mitogen-activated protein kinase (SB203580), and Jun NH2-terminal kinase 1/2 inhibitor (SP600125). Interestingly, TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons. These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2–JNK–MAPK pathway, which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions. Thus, this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3