STAT3 ameliorates truncated tau-induced cognitive deficits

Author:

Zhang Bingge1,Wan Huali2,Maierwufu Maimaitijiang1,Liu Qian1,Li Ting1,He Ye1,Wang Xin1,Liu Gongping1,Hong Xiaoyue3ORCID,Feng Qiong4

Affiliation:

1. Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China

2. Department of Laboratory Medicine, Guangdong Provincial, People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China

3. Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, Hubei Province, China

4. Department of Pathology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China

Abstract

JOURNAL/nrgr/04.03/01300535-202404000-00038/inline-graphic1/v/2023-09-09T133047Z/r/image-tiff Proteolytic cleavage of tau by asparagine endopeptidase (AEP) creates tau-N368 fragments, which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients. Nonetheless, the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear. Evidence suggests that signal transduction and activator of transcription-3 (STAT3) is associated with modulating synaptic plasticity, cell apoptosis, and cognitive function. Using luciferase reporter assays, electrophoretic mobility shift assays, western blotting, and immunofluorescence, we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus. Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss, thereby improving the cognitive deficits in tau-N368 mice. Moreover, in tau-N368 mice, activation of STAT3 increased N-methyl-D-aspartic acid receptor levels, decreased Bcl-2 levels, reversed synaptic damage and neuronal loss, and thereby alleviated cognitive deficits caused by tau-N368. Taken together, STAT3 plays a critical role in truncated tau-related neuropathological changes. This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits. STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3