SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration

Author:

Singh Aditi1,Chimata Anuradha Venkatakrishnan1,Deshpande Prajakta1,Bajpai Soumya1,Sangeeth Anjali1,Rajput Mrigendra1ORCID,Singh Amit12345ORCID

Affiliation:

1. Department of Biology, University of Dayton, Dayton, OH, USA

2. Premedical Program, University of Dayton, Dayton, OH, USA

3. Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA

4. The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA

5. Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA

Abstract

Abstract JOURNAL/nrgr/04.03/01300535-202406000-00044/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff Infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus, responsible for the coronavirus disease 2019 (COVID-19) pandemic, induces symptoms including increased inflammatory response, severe acute respiratory syndrome (SARS), cognitive dysfunction like brain fog, and cardiovascular defects. Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer’s disease remain understudied. Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila melanogaster eye, we found that misexpression of nonstructural protein 3 (Nsp3), a papain-like protease, ablates the eye and generates dark necrotic spots. Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-end labeling (TUNEL) assay, and dihydroethidium staining. Furthermore, Nsp3 misexpression activates both apoptosis and autophagy mechanism(s) to regulate tissue homeostasis. Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma, Neuro-2a cells, significantly reduced the metabolic activity of these cells and triggers cell death. Misexpression of SARS-CoV2 Nsp3 in an Alzheimer’s disease transgenic fly eye model (glass multiple repeats [GMR]>amyloid β42) further enhances the neurodegenerative rough eye phenotype due to increased cell death. These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3