Quantitative Analysis of Image Quality in Low-Dose Computed Tomography Imaging for COVID-19 Patients

Author:

Ghane Behrooz,Karimian Alireza,Mostafapour Samaneh,Gholamiankhak Faezeh,Shojaerazavi Seyedjafar,Arabi Hossein

Abstract

Background: Computed tomography (CT) scan is one of the main tools to diagnose and grade COVID-19 progression. To avoid the side effects of CT imaging, low-dose CT imaging is of crucial importance to reduce population absorbed dose. However, this approach introduces considerable noise levels in CT images. Methods: In this light, we set out to simulate four reduced dose levels (60% dose, 40% dose, 20% dose, and 10% dose) of standard CT imaging using Beer–Lambert's law across 49 patients infected with COVID-19. Then, three denoising filters, namely Gaussian, bilateral, and median, were applied to the different low-dose CT images, the quality of which was assessed prior to and after the application of the various filters via calculation of peak signal-to-noise ratio, root mean square error (RMSE), structural similarity index measure, and relative CT-value bias, separately for the lung tissue and whole body. Results: The quantitative evaluation indicated that 10%-dose CT images have inferior quality (with RMSE = 322.1 ± 104.0 HU and bias = 11.44% ± 4.49% in the lung) even after the application of the denoising filters. The bilateral filter exhibited superior performance to suppress the noise and recover the underlying signals in low-dose CT images compared to the other denoising techniques. The bilateral filter led to RMSE and bias of 100.21 ± 16.47 HU and − 0.21% ± 1.20%, respectively, in the lung regions for 20%-dose CT images compared to the Gaussian filter with RMSE = 103.46 ± 15.70 HU and bias = 1.02% ± 1.68% and median filter with RMSE = 129.60 ± 18.09 HU and bias = −6.15% ± 2.24%. Conclusions: The 20%-dose CT imaging followed by the bilateral filtering introduced a reasonable compromise between image quality and patient dose reduction.

Publisher

Medknow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defining Noise Index in Abdominal CT: A Comprehensive Analysis Using Liver and Kidney as Regions of Interests;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3