Analysis of differences in the stability of proteins encoded in mitochondrial DNA of model organisms

Author:

KOWAL KRZYSZTOF,BOWNIK ADAM,TKACZYK ANGELIKA,ŚLASKA BRYGIDA

Abstract

The aim of this study was to describe the stability of proteins encoded in mtDNA, which are part of the OXPHOS system, in different model organisms and to define why certain proteins are more prone to be unstable than others. The in silico analyses involved 155 reference sequences of all proteins encoded in the mitochondrial DNA in twelve model organisms representing different phylogenetic groups. The amino acid sequences of the proteins were taken from the GenPept database. The bioinformatic analyses were performed in the ProtParam program. Thirty-eight of the 155 analyzed proteins exhibited instability. The greatest numbers of unstable mitochondrial proteins were detected in H. sapiens and A. mexicanum and the lowest levels were found in C. elegans. ND1 and ATP8 were the most unstable mitochondrial proteins. Proteins COX1 and COX3 did not exhibit instability in the examined group of organisms. The highest instability index values were recorded in the case of protein ATP8. Protein ND1 turned out to be stable in the representatives of the class invertebrates. The preliminary results of the pioneer investigations indicate that the type and number of unstable proteins encoded in mtDNA was species specific. Protein instability in lower organisms may be associated with resistance to oxidative stress. In higher organisms, in turn, protein instability may be related to the physiological production of free oxygen radicals, which play multiple roles in metabolic processes. The phenomenon of instability in the respiratory chain proteins may have a strategic function although it appears to be detrimental to the stability of the protein structure per se.

Publisher

Medycyna Weterynaryjna - Redakcja

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3