A novel technique for detecting electricity theft in secure smart grids using CNN and XG-boost

Author:

Nawaz Asif,Ali Tariq,Mustafa Ghulam,Rehman Saif Ur,Rashid Muhammad RizwanORCID

Publisher

Elsevier BV

Subject

Artificial Intelligence,Computer Science Applications,Computer Vision and Pattern Recognition,Signal Processing,Computer Science (miscellaneous)

Reference20 articles.

1. LSTM and bat-based RUSBoost approach for electricity theft detection;Adil;Applied Sciences,2020

2. Comparative analysis of machine learning algorithms for prediction of smart grid stability;Bashir;International Transactions on Electrical Energy Systems,2021

3. Recent advancement in smart grid technology: Future prospects in the electrical power network;Butt;Ain Shams Engineering Journal,2021

4. Medical image-based detection of COVID-19 using deep convolution neural networks;Gaur;Multimedia Systems,2021

5. Improving knowledge-based systems with statistical techniques, text mining, and neural networks for non-technical loss detection;Guerrero;Knowledge-Based System,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on time series prediction of hybrid intelligent systems based on deep learning;Intelligent Systems with Applications;2024-09

2. Review on Temporal Convolutional Networks for Electricity Theft Detection with Limited Data;British Journal of Computer, Networking and Information Technology;2024-08-23

3. Abnormal Electricity Consumption Behavior Detection Based on Highway Network;Proceedings of the 5th International Conference on Computer Information and Big Data Applications;2024-04-26

4. RNN-BiLSTM-CRF based amalgamated deep learning model for electricity theft detection to secure smart grids;PeerJ Computer Science;2024-02-26

5. Electricity Theft Detection in Smart Grids Based on Omni-Scale CNN and AutoXGB;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3