Image semantic segmentation of indoor scenes: A survey
-
Published:2024-11
Issue:
Volume:248
Page:104102
-
ISSN:1077-3142
-
Container-title:Computer Vision and Image Understanding
-
language:en
-
Short-container-title:Computer Vision and Image Understanding
Author:
Velastegui RonnyORCID,
Tatarchenko Maxim,
Karaoglu Sezer,
Gevers Theo
Reference104 articles.
1. AgriSegNet: Deep aerial semantic segmentation framework for IoT-assisted precision agriculture;Anand;IEEE Sens. J.,2021
2. Arnab, A., Miksik, O., Torr, P.H., 2018. On the robustness of semantic segmentation models to adversarial attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 888–897.
3. Azulay, A., Halperin, T., Vantzos, O., Bornstein, N., Bibi, O., 2022. Temporally stable video segmentation without video annotations. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3449–3458.
4. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017
5. The vulnerability of semantic segmentation networks to adversarial attacks in autonomous driving: Enhancing extensive environment sensing;Bar;IEEE Signal Process. Mag.,2020