Author:
Kocian A.,Massa D.,Cannazzaro S.,Incrocci L.,Di Lonardo S.,Milazzo P.,Chessa S.
Subject
Horticulture,Computer Science Applications,Agronomy and Crop Science,Forestry
Reference41 articles.
1. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations.
2. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area;Baille;Sci. Hortic.,1994
3. Machine learning applications on agricultural datasets for smart farm enhancement;Balducci;Machines,2018
4. Bayesian networks modeling for crop diseases;Bi,2010
5. Burchi, G., Chessa, S., Gambineri, F., Kocian, A., Massa, D., Milano, P., Milazzo, P., Rimediotti, L., Ruggeri, A., 2018. Information technology controlled greenhouse: a system architecture. In: Proc. IoT Vertical and Topical Summit for Agriculture, IEEE, Tuscany, Italy. doi:https://doi.org/10.1109/IOT-TUSCANY.2018.8373044.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献