Author:
Chen Jiqing,Ma Aoqiang,Huang Lixiang,Li Hongwei,Zhang Huiyao,Huang Yang,Zhu Tongtong
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Reference32 articles.
1. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934.
2. Chen, J., Kao, S.-h., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G., 2023. Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021-12031. https://doi.org/10.48550/arXiv.2303.03667.
3. Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion;Chen;Comput. Electron. Agric.,2022
4. LES-YOLO: A lightweight pinecone detection algorithm based on improved YOLOv4-Tiny network;Cui;Comput. Electron. Agric.,2023
5. Object detection using YOLO: Challenges, architectural successors, datasets and applications;Diwan;Multimed. Tools Appl.,2023
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献