1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. URL: https://www.tensorflow.org/.
2. Method for using images from a color digital camera to estimate flower number;Adamsen;Crop Sci.,2000
3. Akiva, P., Dana, K., Oudemans, P., Mars, M., 2020. Finding berries: Segmentation and counting of cranberries using point supervision and shape priors. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 219–228.
4. Weakly supervised fruit counting for yield estimation using spatial consistency;Bellocchio;IEEE Robot. Automat. Lett.,2019
5. Balan, L., (Kiyo), K.K., Deriabin, D., Hoang, L., Ivaniuk, A., Dada, Y., Datta, D., Patel, Z., Wrigley, G., Danov, I., Stichbury, J., Khan, N., Tsaousis, N., Theisen, M., Walker, W., Nguyen, T., Westenra, R., Carvalho, L., Trevisani, M.D., Bertoli, S., Mawjee, S., sasaki takeru, Nijholt, B., Vukolov, D., Fischer, K., Vijaykumar, Minami, Y., bru5, dr3s, Dec. 2020. quantumblacklabs/kedro: 0.17.0. URL: https://doi.org/10.5281/zenodo.4336685.